Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
PeerJ ; 12: e17165, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590706

RESUMO

Background: Plastic waste is a global environmental issue that impacts the well-being of humans, animals, plants, and microorganisms. Microplastic contamination has been previously reported at Kung Wiman Beach, located in Chanthaburi province along with the Eastern Gulf of Thailand. Our research aimed to study the microbial population of the sand and plastisphere and isolate microorganisms with potential plastic degradation activity. Methods: Plastic and sand samples were collected from Kung Wiman Beach for microbial isolation on agar plates. The plastic samples were identified by Fourier-transform infrared spectroscopy. Plastic degradation properties were evaluated by observing the halo zone on mineral salts medium (MSM) supplemented with emulsified plastics, including polystyrene (PS), polylactic acid (PLA), polyvinyl chloride (PVC), and bis (2-hydroxyethyl) terephthalate (BHET). Bacteria and fungi were identified by analyzing nucleotide sequence analysis of the 16S rRNA and internal transcribed spacer (ITS) regions, respectively. 16S and ITS microbiomes analysis was conducted on the total DNA extracted from each sample to assess the microbial communities. Results: Of 16 plastic samples, five were identified as polypropylene (PP), four as polystyrene (PS), four as polyethylene terephthalate (PET), two as high-density polyethylene (HDPE), and one sample remained unidentified. Only 27 bacterial and 38 fungal isolates were found to have the ability to degrade PLA or BHET on MSM agar. However, none showed degradation capabilities for PS or PVC on MSM agar. Notably, Planococcus sp. PP5 showed the highest hydrolysis capacity of 1.64 ± 0.12. The 16S rRNA analysis revealed 13 bacterial genera, with seven showing plastic degradation abilities: Salipiger, Planococcus, Psychrobacter, Shewanella, Jonesia, Bacillus, and Kocuria. This study reports, for the first time of the BHET-degrading properties of the genera Planococcus and Jonesia. Additionally, The ITS analysis identified nine fungal genera, five of which demonstrated plastic degradation abilities: Aspergillus, Penicillium, Peacilomyces, Absidia, and Cochliobolus. Microbial community composition analysis and linear discriminant analysis effect size revealed certain dominant microbial groups in the plastic and sand samples that were absent under culture-dependent conditions. Furthermore, 16S and ITS amplicon microbiome analysis revealed microbial groups were significantly different in the plastic and sand samples collected. Conclusions: We reported on the microbial communities found on the plastisphere at Kung Wiman Beach and isolated and identified microbes with the capacity to degrade PLA and BHET.


Assuntos
Actinomycetales , Microbiota , Actinomycetales/genética , Ágar/metabolismo , Bactérias/genética , Microbiota/genética , Plásticos/metabolismo , Poliésteres/metabolismo , Poliestirenos/metabolismo , RNA Ribossômico 16S/genética , Areia
2.
Sci Total Environ ; 929: 172775, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670383

RESUMO

Environmental pollution caused by the excessive use of plastics has resulted in the inflow of microplastics into the human body. However, the effects of microplastics on the human gut microbiota still need to be better understood. To determine whether plastic-degrading bacteria exist in the human gut, we collected the feces of six human individuals, did enrichment cultures and screened for bacterial species with a low-density polyethylene (LDPE) or polypropylene (PP)-degrading activity using a micro-spray method. We successfully isolated four bacterial species with an LDPE-degrading activity and three with a PP-degrading activity. Notably, all bacterial species identified with an LDPE or PP-degrading activity were opportunistic pathogens. We analyzed the microbial degradation of the LDPE or PP surface using scanning electron microscopy and confirmed that each bacterial species caused the physical changes. Chemical structural changes were further investigated using X-ray photoelectron spectroscopy and Fourier-transform-infrared spectroscopy, confirming the oxidation of the LDPE or PP surface with the formation of carbonyl groups (C=O), ester groups (CO), and hydroxyl groups (-OH) by each bacterial species. Finally, high temperature gel permeation chromatography (HT-GPC) analysis showed that these bacterial species performed to a limited extent depolymerization. These results indicate that, as a single species, these opportunistic pathogens in the human gut have a complete set of enzymes and other components required to initiate the oxidation of the carbon chains of LDPE or PP and to degrade them. Furthermore, these findings suggest that these bacterial species can potentially biodegrade and metabolize microplastics in the human gut.


Assuntos
Bactérias , Microbioma Gastrointestinal , Plásticos , Humanos , Bactérias/metabolismo , Plásticos/metabolismo , Fezes/microbiologia , Biodegradação Ambiental , Microplásticos/metabolismo , Poluentes Ambientais/metabolismo
3.
Enzyme Microb Technol ; 177: 110429, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537325

RESUMO

Poly(ethylene furanoate) (PEF) plastic is a 100% renewable polyester that is currently being pursued for commercialization as the next-generation bio-based plastic. This is in line with growing demand for circular bioeconomy and new plastics economy that is aimed at minimizing plastic waste mismanagement and lowering carbon footprint of plastics. However, the current catalytic route for the synthesis of PEF is impeded with technical challenges including high cost of pretreatment and catalyst refurbishment. On the other hand, the semi-biosynthetic route of PEF plastic production is of increased biotechnological interest. In particular, the PEF monomers (Furan dicarboxylic acid and ethylene glycol) can be synthesized via microbial-based biorefinery and purified for subsequent catalyst-mediated polycondensation into PEF. Several bioengineering and bioprocessing issues such as efficient substrate utilization and pathway optimization need to be addressed prior to establishing industrial-scale production of the monomers. This review highlights current advances in semi-biosynthetic production of PEF monomers using consolidated waste biorefinery strategies, with an emphasis on the employment of omics-driven systems biology approaches in enzyme discovery and pathway construction. The roles of microbial protein transporters will be discussed, especially in terms of improving substrate uptake and utilization from lignocellulosic biomass, as well as from depolymerized plastic waste as potential bio-feedstock. The employment of artificial bioengineered microbial consortia will also be highlighted to provide streamlined systems and synthetic biology strategies for bio-based PEF monomer production using both plant biomass and plastic-derived substrates, which are important for circular and new plastics economy advances.


Assuntos
Biomassa , Consórcios Microbianos , Plásticos , Consórcios Microbianos/genética , Plásticos/metabolismo , Biotecnologia , Furanos/metabolismo , Polímeros/metabolismo
4.
Sci Total Environ ; 923: 171432, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442749

RESUMO

The extensive utilization of mulch films in agricultural settings, coupled with the persistence of microplastic remnants in soil following the natural degradation of plastics, has given rise to detrimental microplastic impacts on crops. Arsenic (As) contamination in the environment is known to accumulate in crops through aquatic pathways or soil. Garlic (Allium sativum L.), a globally popular crop and seasoning, contains alliin, a precursor of its flavor compounds with medicinal properties. While alliin exhibits antimicrobial and antioxidant effects in garlic, its response to microplastics and arsenic has not been thoroughly investigated, specifically in terms of microplastic or As uptake. This study aimed to explore the impact of varied stress concentrations of microplastics on the toxicity, migration, and accumulation of As compounds. Results demonstrated that polystyrene (PS) fluorescent microspheres, with an 80 nm diameter, could permeate garlic bulbs through the root system, accumulating within vascular tissues and intercellular layers. Low concentrations of PS (10 and 20 mg L-1) and As (2 mg L-1) mitigated the production and accumulation of reactive oxygen species (ROS) and antioxidant enzymes in garlic. Conversely, garlic exhibited reduced root vigor, substance uptake, and translocation when treated with elevated As concentrations (4 mg L-1) in conjunction with PS concentrations of 40 and 80 mg L-1. An escalation in PS concentration facilitated As transport into bulbs but led to diminished As accumulation and biomass in the root system. Notably, heightened stress levels weakened garlic's antioxidant defense system, encompassing sulfur allicin and phytochelatin metabolism, crucial for combating the phytotoxicity of PS and As. In summary, PS exerted a detrimental influence on garlic, exacerbating As toxicity. The findings from this study offer insights for subsequent investigations involving Liliaceae plants.


Assuntos
Arsênio , Cisteína/análogos & derivados , Alho , Antioxidantes/metabolismo , Alho/metabolismo , Microplásticos/toxicidade , Microplásticos/metabolismo , Plásticos/metabolismo , Arsênio/toxicidade , Arsênio/metabolismo , Solo
5.
J Hazard Mater ; 470: 134116, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38547753

RESUMO

Microplastic (MP), as a new pollutant, not only affects the growth and development of plants but also may affect the secondary metabolites of plants. The anti-tumor role of Pinellia ternata is related to secondary metabolites. The role of brassinolide (BR) in regulating plant resistance is currently one of the research hotspots. The paper mainly explores the regulation of BR on growth and physiology of Pinellia ternata under MP stress. The experimental design includes two levels of MP (0, 1%) and two levels of BR (0, 0.1 mg/L). MP led to a marked reduction in plant height (15.0%), Fv/Fm (3.2%), SOD and APX activity (15.0%, 5.1%), whereas induced an evident raise in the rate of O2·- production (29.6%) and GSH content (4.4%), as well as flavonoids (6.8%), alkaloids (75%), and ß-sitosterol (26.5%) contents. Under MP addition, BR supply significantly increased plant height (15.7%), aboveground and underground biomass (16.1%, 10.3%), carotenoid and GSH content (11.8%, 4.2%), Fv/Fm (2.9%), and activities of SOD, GR, and MDHAR (32.2%, 21.08%, 20.9%). These results indicate that MP suppresses the growth of P. ternata, although it promotes secondary metabolism. BR can alleviate the inhibitory effect of MP on growth by improving photosynthesis, redox homeostasis, and the AsA-GSH cycle.


Assuntos
Brassinosteroides , Glutationa , Homeostase , Oxirredução , Fotossíntese , Pinellia , Esteroides Heterocíclicos , Fotossíntese/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Glutationa/metabolismo , Brassinosteroides/metabolismo , Pinellia/metabolismo , Pinellia/efeitos dos fármacos , Pinellia/crescimento & desenvolvimento , Esteroides Heterocíclicos/farmacologia , Plásticos/metabolismo , Sitosteroides/metabolismo , Flavonoides/metabolismo
6.
Environ Pollut ; 348: 123822, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38522609

RESUMO

Environmental pollution poses a significant and pressing threat to the overall well-being of aquatic ecosystems in modern society. This study showed that pollutants like dusts from AC filter, fan wings and Traffic dust PM 2.5 were exposed to Artemia salina in pristine form and in combination. The findings indicated that exposure to multi-pollutants had a detrimental effect on the hatching rates of A. salina cysts. Compared to untreated A. salina, the morphology of adult (7th day old) A. salina changed noticeably after each incubation period (24-120 h). Oxidative stress increased considerably as the exposure duration increased from 24 to 120 h compared to the control group. There was a time-dependent decline in antioxidant enzyme activity and total protein concentration. When all particles were used all together, the total protein content in A. salina decreased significantly. All particles showed a considerable decline in survival rate. Those exposed to traffic dust particles showed significantly higher levels of oxidative stress and antioxidant activity than those exposed to other particles.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Animais , Acetaminofen , Antioxidantes/metabolismo , Artemia/metabolismo , Ecossistema , Poluentes Ambientais/metabolismo , Microplásticos/metabolismo , Plásticos/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
7.
Chemosphere ; 352: 141499, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38373446

RESUMO

Plastics biodegradation by insect larvae is considered as a new strategy for plastic wastes treatment. To uncover the biodegradation of a more complex chemical polymer of melamine formaldehyde (MF) by insect larvae, two worm species of yellow mealworm Tenebrio molitor and superworm Zophobas atratus were fed on MF foam as sole diet for 45 days with sole bran diet as control. Although the MF foam consumption by yellow mealworms of 0.38 mg/d/g-larvae was almost 40% higher than that by superworms of 0.28 mg/d/g-larvae, a similar decrease of survival rates in both species were obtained at about 58%, indicating the adverse effects on their growth. Depolymerization and biodegradation of MF foam occurred in both larval guts, but was more extensive in yellow mealworms. MF foam sole diet influenced gut bacterial and fungal microbiomes of both larvae species, which were assessed by Illumina MiSeq on day 45. Compared to the bran-fed group, both gut bacterial and fungal communities significantly changed in MF-fed groups, but differed in the two larvae species. The results demonstrated a strong association between the distinctive gut microbiome and MF foam degradation, such as unclassified Enterobacteriaceae, Hyphopichia and Issatchenkia. However, sole MF foam diet negatively influenced worms, like lower survival rates and gut abnormalities. In summary, MF foam could be degraded by both yellow mealworms and superworms, albeit with adverse effects. Gut microbes were strongly associated to MF foam degradation, especially the gut fungi.


Assuntos
Besouros , Microbioma Gastrointestinal , Tenebrio , Triazinas , Animais , Tenebrio/metabolismo , Poliestirenos/metabolismo , Besouros/metabolismo , Larva/metabolismo , Plásticos/metabolismo , Bactérias/metabolismo , Ingestão de Alimentos
8.
Environ Toxicol ; 39(5): 2502-2511, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38180308

RESUMO

The purpose of this study was to explore the effects of combined lead (Pb) and two types of microplastic (MP) (polyvinyl chloride [PVC] and polyethylene [PE]) exposure on glucose metabolism and investigate the role of the nuclear factor erythroid 2-related factor 2 (Nrf2)/nuclear factor-kappa B (NF-κB) signaling pathway in mediating these effects in mice. Adult C57BL/6J mice were randomly divided into four groups: control, Pb (100 mg/L), MPs (containing 10 mg/L PE and PVC), and Pb + MPs, each of which was treated with drinking water. Treatments were conducted for 6 weeks. Co-exposure to Pb + MPs exhibited increase glycosylated serum protein levels, insulin resistance, and damaged glucose tolerance compared with the control mice. Additionally, treatment with Pb + MPs caused more severe damage to hepatocytes than when exposed to them alone concomitantly, exposed to Pb + MPs exhibited improved the levels of interleukin-6, tumor necrosis factor-alpha, and malondialdehyde, but reduced superoxide dismutase, glutathione peroxidase, and catalase assay in livers. Furthermore, they increase the Kelch-like ECH-associated protein 1 (Keap1) and phosphorylated p-NF-κB protein levels but reduced the protein levels of heme oxygenase-1 and Nrf2, as well as increased Keap1 mRNA and Nrf2 mRNA. Co-exposure to Pb + MP impacts glucose metabolism via the Nrf2 /NF-κB pathway.


Assuntos
NF-kappa B , Plásticos , Camundongos , Animais , NF-kappa B/metabolismo , Plásticos/metabolismo , Plásticos/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Microplásticos , Chumbo , Camundongos Endogâmicos C57BL , Estresse Oxidativo , RNA Mensageiro/metabolismo , Glucose/farmacologia
9.
Toxicol Sci ; 198(2): 210-220, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38291899

RESUMO

Microplastics (MP) derived from the weathering of polymers, or synthesized in this size range, have become widespread environmental contaminants and have found their way into water supplies and the food chain. Despite this awareness, little is known about the health consequences of MP ingestion. We have previously shown that the consumption of polystyrene (PS) beads was associated with intestinal dysbiosis and diabetes and obesity in mice. To further evaluate the systemic metabolic effects of PS on the gut-liver-adipose tissue axis, we supplied C57BL/6J mice with normal water or that containing 2 sizes of PS beads (0.5 and 5 µm) at a concentration of 1 µg/ml. After 13 weeks, we evaluated indices of metabolism and liver function. As observed previously, mice drinking the PS-containing water had a potentiated weight gain and adipose expansion. Here we found that this was associated with an increased abundance of adipose F4/80+ macrophages. These exposures did not cause nonalcoholic fatty liver disease but were associated with decreased liver:body weight ratios and an enrichment in hepatic farnesoid X receptor and liver X receptor signaling. PS also increased hepatic cholesterol and altered both hepatic and cecal bile acids. Mice consuming PS beads and treated with the berry anthocyanin, delphinidin, demonstrated an attenuated weight gain compared with those mice receiving a control intervention and also exhibited a downregulation of cyclic adenosine monophosphate (cAMP) and peroxisome proliferator-activated receptor (PPAR) signaling pathways. This study highlights the obesogenic role of PS in perturbing the gut-liver-adipose axis and altering nuclear receptor signaling and intermediary metabolism. Dietary interventions may limit the adverse metabolic effects of PS consumption.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Plásticos , Animais , Camundongos , Plásticos/metabolismo , Plásticos/farmacologia , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Microplásticos/metabolismo , Microplásticos/farmacologia , Camundongos Endogâmicos C57BL , Fígado , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/induzido quimicamente , Obesidade/metabolismo , Aumento de Peso
10.
J Hazard Mater ; 465: 133495, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38232549

RESUMO

Currently, the binding of iron-binding protein transferrin (TF) with NPs and their interaction mechanisms have not been completely elucidated yet. Here, we probed the conformation-dependent release of Fe ions from TF induced by nano-sized polystyrene plastics (PS-NPs) using dialysis, ICP-MS, multi-spectroscopic techniques, and computational simulation. The results showed that the release of free Fe ions from TF was activated after PS-NPs binding, which displayed a clear dose-effect correlation. PS-NPs binding can induce the unfolding and loosening of polypeptide chain and backbone of TF. Alongside this we found that the TF secondary structure was destroyed, thereby causing TF protein misfolding and denaturation. In parallel, PS-NPs interacted with the chromophores, resulting in the occurrence of fluorescence sensitization effects and the disruption of the surrounding micro-environment of aromatic amino acids. Also, the binding of PS-NPs induced the formation of new aggregates in the PS-NPs-TF system. Further simulations indicated that PS-NPs exhibited a preference for binding to the hinge region that connects the C-lobe and N-lobe, which is responsible for the Fe ions release and structural alterations of TF. This finding provides a new understanding about the regulation of the release of Fe ions of iron-loaded TF through NPs-induced conformational and structural changes.


Assuntos
Plásticos , Poliestirenos , Poliestirenos/metabolismo , Plásticos/metabolismo , Ferro/química , Transferrina/metabolismo , Conformação Proteica
11.
Theriogenology ; 215: 158-169, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070215

RESUMO

Polystyrene microplastics (PS-MPs) are important carriers of pollutants in water. 17α-Methyltestosterone (MT) is a synthetic environmental endocrine disrupting chemical (EDC) with androgenic effects. To study the effects of PS-MPs and MT on zebrafish reproductive systems, zebrafish were exposed to 0 or 50 ng L-1 MT, 0.5 mg∙L-1 PS-MPs, or 50 ng∙L-1 MT + 0.5 mg∙L-1 PS-MPs for 21 d. The results showed that the different exposure reagents caused varying degrees of damage to the reproductive systems in zebrafish, with the extent of damage increasing as the exposure duration increased. Histological analysis of the gonads revealed that the ratio of mature oocytes and mature spermatozoa in the gonad decreased gradually with increased exposure time, with the ratio being Control > PS-MPs > MT > MT + PS-MPs in decreasing order. The results of quantitative real-time PCR (qRT‒PCR) showed that in female fish treated for 7 d, the expression of cyp11a mRNA was significantly reduced in all three treatment groups(MT, PS-MPs, and MT + PS-MPs), while in the group treated for 14 d with MT + PS-MPs, the expression of cyp19a1a and StAR mRNA was significantly increased. In male fish exposed for 21 d, the expression of cyp11a, cyp17a1, cyp19a1a, StAR, 3ß-HSD, and 17ß-HSD3 mRNA was significantly decreased in MT + PS-MPs. ELISA results showed that after 14 d of exposure, the levels of E2, LH, and FSH in the ovaries of female fish were significantly reduced in all three treatment groups. Similarly, the levels of T, E2, LH, and FSH in the testis of male fish were significantly reduced after 14 d of exposure to PS-MPs and MT + PS-MPs. Offspring of zebrafish exposed to MT and MT + PS-MPs exhibited delayed incubation time and slow development. The cross-generational toxicity of PS-MPs themselves may be negligible, but it can exacerbate the toxicity of MT, making the cross-generational effects more pronounced in the offspring, causing offspring mortality and malformations. Offspring of zebrafish exposed to MT and MT + PS-MPs exhibited delayed incubation time and slow development. In addition, MT caused malformations such as pericardial edema, yolk cysts, and spinal deformities in zebrafish during the incubation period.


Assuntos
Metiltestosterona , Peixe-Zebra , Feminino , Masculino , Animais , Metiltestosterona/farmacologia , Poliestirenos/toxicidade , Microplásticos/metabolismo , Microplásticos/farmacologia , Plásticos/metabolismo , Plásticos/farmacologia , Gônadas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Hormônio Foliculoestimulante/farmacologia
12.
Ecotoxicol Environ Saf ; 269: 115746, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38035520

RESUMO

Polyethylene microplastics (PE-MPs) are one of the environmental contaminants that instigate oxidative stress (OS) in various organs of the body, including testes. Kaempferide (KFD) is a plant-derived natural flavonol with potential neuroprotective, hepatoprotective, anti-cancer, anti-oxidant and anti-inflammatory properties. Therefore, the present study was designed to evaluate the alleviative effects of KFD against PE-MPs-prompted testicular toxicity in rats. Fourty eight adult male albino rats were randomly distributed into 4 groups: control, PE-MPs-administered (1.5 mgkg-1), PE-MPs (1.5 mgkg-1) + KFD (20 mgkg-1) co-treated and KFD (20 mgkg-1) only treated group. PE-MPs intoxication significantly (P < 0.05) lowered the expression of Nrf-2 and anti-oxidant enzymes, while increasing the expression of Keap-1. The activities of anti-oxidants i.e., catalase (CAT), glutathione reductase (GSR), superoxide dismutase (SOD), hemeoxygene-1 (HO-1) and glutathione peroxidase (GPx) were reduced, besides malondialdehyde (MDA) and reactive oxygen species (ROS) contents were increased significantly (P < 0.05) following the PE-MPs exposure. Moreover, PE-MPs exposure significantly (P < 0.05) reduced the sperm motility, viability and count, whereas considerably (P < 0.05) increased the dead sperm number and sperm structural anomalies. Furthermore, PE-MPs remarkably (P < 0.05) decreased steroidogenic enzymes and Bcl-2 expression, while increasing the expression of Caspase-3 and Bax. PE-MPs exposure significantly (P < 0.05) reduced the levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH) and testosterone, whereas inflammatory indices were increased. PE-MPs exposure also induced significant histopathological damages in the testes. Nevertheless, KFD supplementation significantly (P < 0.05) abrogated all the damages induced by PE-MPs. The findings of our study demonstrated that KFD could significantly attenuate PE-MPs-instigated OS and testicular toxicity, due to its anti-oxidant, anti-inflammatory, androgenic and anti-apoptotic potential.


Assuntos
Antioxidantes , Quempferóis , Microplásticos , Polietileno , Testículo , Animais , Masculino , Ratos , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Microplásticos/metabolismo , Microplásticos/toxicidade , Estresse Oxidativo , Plásticos/metabolismo , Polietileno/metabolismo , Polietileno/toxicidade , Sêmen , Motilidade dos Espermatozoides , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo
13.
J Hazard Mater ; 465: 133173, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38061126

RESUMO

Enzymatic degradation of plastic is an effective means of plastic recycling and pollution control. However, the strong chemical inertness of polypropylene plastic (PP) severely impedes its oxidative cleavage, making it resistant to degradation. In this study, based on sequence screening of Hidden Markov Model (HMM), a dioxygenase (HIS1) was identified and characterized to be effective in PP oxidation. Various kinds of PP products, including plastic films, microplastics, and disposable water cups or bags, were HIS1-degraded with cracks and holes on the surface. The hydrophobic binding was the primary force driving oxidative degradation in the specific cavity of HIS1. The discovery of HIS1 achieved a zero breakthrough in PP biodegradation, providing a promising candidate for the selection and evolution of degrading enzymes.


Assuntos
Polipropilenos , Poluentes Químicos da Água , Polipropilenos/química , Plásticos/metabolismo , Oxigenases , Microplásticos , Biodegradação Ambiental , Poluentes Químicos da Água/análise
14.
Environ Pollut ; 341: 122891, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37951530

RESUMO

Microplastics (MPs) have been found in virtually every environment on earth and become a source of pollution around the world. The toxicology of microplastics on immunity is an emerging area of research, and more studies are needed to fully understand the effects of microplastics exposure on animal health. Therefore, we tried to determine the immunotoxic effects of microplastics on avian spleen by using an animal model- Japanese quail (Coturnix japonica). One-week chicks were exposed to environmentally relevant concentrations of 0.02 mg/kg, 0.4 mg/kg and 8 mg/kg polystyrene microplastics in the feed for 5 weeks. The results demonstrated that microplastics induced microstructural injuries featured by cell disarrangement and vacuolation indicating splenic inflammation. Ultrastructural damages including membrane lysis and mitochondrial vacuolation also suggested inflammatory responses in the spleen by microplastics exposure. Meanwhile, increasing reactive oxygen species (ROS) and Malondialdehyde (MDA) while the inactivation of superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) indicated oxidative stress in the spleen. Moreover, the increasing level of proinflammatory cytokines including Tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and decreasing level of anti-inflammatory cytokine interleukin-10 (IL-10) implied splenic inflammation. Furthermore, transcriptomic analysis showed that microplastics induced inflammatory responses in the spleen through p38 mitogen-activated protein kinases (p38 MAPK) pathway activation and tumor necrosis factor (TNF) signaling stimulation. The signaling stimulation also aggravated cell apoptosis in the spleen. The present study may benefit to understand potential mechanisms of developmental immunotoxicology of microplastics.


Assuntos
Coturnix , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Plásticos/metabolismo , Microplásticos/toxicidade , Microplásticos/metabolismo , Baço/metabolismo , Transdução de Sinais , Citocinas/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Estresse Oxidativo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo
15.
Biodegradation ; 35(3): 249-279, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37665521

RESUMO

To date, enumerable fungi have been reported to participate in the biodegradation of several notorious plastic materials following their isolation from soil of plastic-dumping sites, marine water, waste of mulch films, landfills, plant parts and gut of wax moth. The general mechanism begins with formation of hydrophobin and biofilm proceding to secretion of specific plastic degarding enzymes (peroxidase, hydrolase, protease and urease), penetration of three dimensional substrates and mineralization of plastic polymers into harmless products. As a result, several synthetic polymers including polyethylene, polystyrene, polypropylene, polyvinyl chloride, polyurethane and/or bio-degradable plastics have been validated to deteriorate within months through the action of a wide variety of fungal strains predominantly Ascomycota (Alternaria, Aspergillus, Cladosporium, Fusarium, Penicillium spp.). Understanding the potential and mode of operation of these organisms is thus of prime importance inspiring us to furnish an up to date view on all the presently known fungal strains claimed to mitigate the plastic waste problem. Future research henceforth needs to be directed towards metagenomic approach to distinguish polymer degrading microbial diversity followed by bio-augmentation to build fascinating future of waste disposal.


Assuntos
Plásticos , Poliuretanos , Plásticos/metabolismo , Polímeros , Polietileno/metabolismo , Biodegradação Ambiental , Alternaria/metabolismo
16.
Sci Total Environ ; 912: 169019, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38048993

RESUMO

Plastic ingestion in birds is a widespread phenomenon of increasing concern. However, little is known about how exposure to microplastics (MP) affects the health of birds. In other organisms, MP exposure alters lipid metabolism and composition. If also true in birds, this could affect their fitness, especially since birds heavily rely on lipids during migration and egg production. Therefore, the aim of this study was to determine if ingestion of MP (polypropylene and polyethylene collected in nature) in two size ranges, large (3 mm) and small (<125 µm), affects lipid metabolism in the Japanese quail (Coturnix japonica). We orally exposed 55 one-week-old quail during 5 weeks to a total of 600 mg of MP in sizes of either large, small, or a mixture of both. After the exposure period, females fed small MP had higher liver masses compared to control females (on average ± SD, 8.95 ± 2.3 g vs. 6.34 ± 1.0 g), while liver lipid content did not differ in either males or females. The levels of monounsaturated fatty acids were lower in females exposed to large MP and the mixture of both MP sizes compared to controls. Females exposed to MP also had different levels of oleic- (18:1) and palmitoleic (16:1) acid compared to controls dependent on MP size. Exposure to small MP increased levels of palmitic- (16:0) and palmitoleic (16:1) acid in both males and females suggesting a possible increase in de novo fatty acid synthesis. Taken together, our results point towards a sex-specific sensitivity to MP as well as size-dependent MP effects on lipid metabolism in birds. Disruption of fatty acid composition could affect important life stages in female birds, such as migration and egg-laying. We stress the importance of further research focused on determining the mechanisms of action of MP on lipid metabolism.


Assuntos
Coturnix , Ácidos Graxos , Animais , Masculino , Feminino , Ácidos Graxos/metabolismo , Microplásticos/metabolismo , Plásticos/toxicidade , Plásticos/metabolismo , Tamanho da Partícula
17.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38068996

RESUMO

The skin is the outermost layer of the body and, therefore, is exposed to a variety of stressors, such as environmental pollutants, known to cause oxinflammatory reactions involved in the exacerbation of several skin conditions. Today, inflammasomes are recognized as important modulators of the cutaneous inflammatory status in response to air pollutants and ultraviolet (UV) light exposure. In this study, human skin explants were exposed to the best-recognized air pollutants, such as microplastics (MP), cigarette smoke (CS), diesel engine exhaust (DEE), ozone (O3), and UV, for 1 or 4 days, to explore how each pollutant can differently modulate markers of cutaneous oxinflammation. Exposure to environmental pollutants caused an altered oxidative stress response, accompanied by increased DNA damage and signs of premature skin aging. The effect of specific pollutants being able to exert different inflammasomes pathways (NLRP1, NLRP3, NLRP6, and NLRC4) was also investigated in terms of scaffold formation and cell pyroptosis. Among all environmental pollutants, O3, MP, and UV represented the main pollutants affecting cutaneous redox homeostasis; of note, the NLRP1 and NLRP6 inflammasomes were the main ones modulated by these outdoor stressors, suggesting their role as possible molecular targets in preventing skin disorders and the inflammaging events associated with environmental pollutant exposure.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Humanos , Inflamassomos/metabolismo , Poluentes Ambientais/metabolismo , Plásticos/metabolismo , Pele/metabolismo , Poluentes Atmosféricos/toxicidade
18.
Appl Environ Microbiol ; 89(12): e0136523, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-37982621

RESUMO

IMPORTANCE: PP biodegradation has not been clearly shown (it has been uncertain whether the PP structure is actually biodegraded or not). This is the first report on the obvious biodegradation of PP. At the same time, this study shows that Alcanivorax bacteria could be major degraders of PP in mesopelagic environments. Moreover, PP biodegradation has been investigated by using solid PP as the sole carbon source. However, this study shows that PP would not be used as a sole carbon and energy source. Our data thus provide very important and key knowledge for PP bioremediation.


Assuntos
Alcanivoraceae , Polipropilenos , Polipropilenos/metabolismo , Alcanivoraceae/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Carbono/metabolismo , Plásticos/metabolismo
19.
Plant Physiol Biochem ; 203: 108065, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37797385

RESUMO

Microplastics (MPs) and cadmium (Cd) has attracted increasing attention due to their combined toxicity to terrestrial vegetation. Photosynthesis which utilizes light energy to synthesize organic substances is crucial for crop production. However, the plant photosynthetic response to the joint toxicity of MPs and Cd is still unknown. Here, we studied the effects of polyethylene (PE) MPs on the photosynthetic performance of two maize cultivars Xianyu 335 (XY) and Zhengdan 958 (ZD) grown in a Cd contaminated soil. Results showed that the leaf Cd concentration in XY and ZD reached 26.1 and 31.9 µg g-1, respectively. PE-MPs did not influence the leaf Cd content, but posed direct and negative effects on photosynthesis by increasing the malondialdehyde content, reducing the chlorophyll content, inhibiting photosynthetic capacity, disrupting the PSII donor side, blocking electron transfer in different photosystems, and suppressing the oxidation and reduction states of PSI. Transcriptomic analysis revealed that the inhibitory effect of combined PE-MPs and Cd on maize photosynthesis was attributed to suppressed expression of the genes encoding PSII, PSI, F-type ATPase, cytochrome b6/f complex, and electron transport between PSII and PSI. Using WGCNA, we identified a MEturquoise module highly correlated with photosynthetic traits. Hub genes bridging carbohydrate metabolism, amino acid metabolism, lipid metabolism, and translation provided the molecular mechanisms of PE-MPs and Cd tolerance in maize plants. The comprehensive information on the phytotoxicity mechanisms of Cd stress in the presence or absence of PE-MPs on the photosynthesis of maize is helpful for cloning Cd and PE-MP resistance genes in the future.


Assuntos
Cádmio , Zea mays , Cádmio/metabolismo , Zea mays/metabolismo , Microplásticos/metabolismo , Microplásticos/farmacologia , Plásticos/metabolismo , Polietileno/metabolismo , Polietileno/farmacologia , Complexo de Proteína do Fotossistema II/metabolismo , Fotossíntese
20.
Microbiol Res ; 277: 127507, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37793281

RESUMO

The urgent need for better disposal and recycling of plastics has motivated a search for microbes with the ability to degrade synthetic polymers. While microbes capable of metabolizing polyurethane and polyethylene terephthalate have been discovered and even leveraged in enzymatic recycling approaches, microbial degradation of additive-free polypropylene (PP) remains elusive. Here we report the isolation and characterization of two fungal strains with the potential to degrade pure PP. Twenty-seven fungal strains, many isolated from hydrocarbon contaminated sites, were screened for degradation of commercially used textile plastic. Of the candidate strains, two identified as Coniochaeta hoffmannii and Pleurostoma richardsiae were found to colonize the plastic fibers using scanning electron microscopy (SEM). Further experiments probing degradation of pure PP films were performed using C. hoffmannii and P. richardsiae and analyzed using SEM, Raman spectroscopy and Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR). The results showed that the selected fungi were active against pure PP, with distinct differences in the bonds targeted and the degree to which each was altered. Whole genome and transcriptome sequencing was conducted for both strains and the abundance of carbohydrate active enzymes, GC content, and codon usage bias were analyzed in predicted proteomes for each. Enzymatic assays were conducted to assess each strain's ability to degrade naturally occurring compounds as well as synthetic polymers. These investigations revealed potential adaptations to hydrocarbon-rich environments and provide a foundation for further investigation of PP degrading activity in C. hoffmannii and P. richardsiae.


Assuntos
Ascomicetos , Plásticos , Plásticos/química , Plásticos/metabolismo , Polipropilenos/metabolismo , Ascomicetos/metabolismo , Fungos/metabolismo , Biodegradação Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA